管法兰的许用外载荷计算
问题
有朋友问了一个问题:
有台设备,设计压力是4MPa,设计温度°C。用的美标管法兰,材料是16Mn,Class,法兰的最大允许工作压力是4.MPa。
由于管口载荷比较大,按照法兰当量设计压力计算公式,法兰的当量设计压力远远高于设计压力。
感觉十分危险,请问是否需要提升法兰的压力等级?
我问:你是想提升呢,还是不想提升?
回曰:“从画图角度,不想提升,毕竟已经设计完成了,不想修改。
从安全角度,想提升,不能留安全隐患啊。”
设计人说话,就是这严密。
UG-44的用途
其实除了当量设计压力法,还要别的方法也可以处理这种。
不妨打开ASMEVIIII,UG-44:
不好意思,忘记了和版封面一样了。
ASME两年一更新,封面都来不及重新设计,更别提与外载荷相关的UG-44内容,没有任何修改。
可以根据这个公式来计算这个法兰是否能够承受当前的外载荷,做到心中有数。
当然条件允许,可以直接用PVElite来校核管口载荷对法兰的承载能力影响。
不过PVElite的报告按照规范的公式编制的,看起来不是很直观,无法了解弯矩和轴向力的贡献程度。
EXCEL的实现
关于UG-44的介绍在原先的文章中有过介绍:
UG-44(b)的正确打开方式
管口载荷需要折算当量压力吗?
当时分析了公式的组成,其实和法兰当量设计压力计算公式基本相同,只是多了FM的取值。
为了方便衡量弯矩和轴向拉力对于当量压力的贡献,我决定做个EXCEL表格,其思路按照上面变形后的公式来评定。
表格界面如下:
表格特点:
1.自动查询弯矩系数FM。
2.计算弯矩对于当量压力的贡献PME。
3.计算轴向力对于当量压力的贡献PFE。
4.计算完成,打印成一页的A4纸存档。
弯矩主导了等效压力
按照UG-44计算,我们发现法兰在外载荷下还是安全的。
通过结果分析,一般来说弯矩对于等效压力的贡献远远大于轴向力。
这是为什么呢?
其实主要是大部分的管口载荷表,基本都是:
弯矩与D的平方成正比,轴力与D的成正比。
设M=b**D*D*,Fa=b**D
PME/FME=D/G,D为英寸,所以G一般为25.4*D
所以PME/FME=12.9倍。
弯矩的贡献比轴向力大10多倍!
弯矩主导了等效压力。
注意一些细节
UG-44是有适用范围的:
1.由于目前规范只做了WN法兰配高强螺栓的研究,所以这个方法不适用于SO等其他种类法兰。
2.另外法兰的螺栓预紧力要大,应该按照ASMEPCC-1非强制性附录O的螺栓扭矩来拧。
σb参考ASMEPCC-1附录O,最大值为40%~70%的常温螺栓屈服强度,最小值为20%~40%的常温螺栓屈服强度。
Vcad,转载请注明:http://www.abuoumao.com/hyls/304.html